Atkin Modular Polynomial Database

The Atkin modular function $f(q)$ of prime level N is a modular function on $X_0^+(N)$ of minimal degree, holomorphic on the upper half plane, and whose $q$-expansion has leading coefficient $1$. It is unique up to a constant. The Atkin modular polynomial is a bivariate polynomial $\Phi_N(X,Y)$ such that $$ \Phi_N(f(q),j(q)) = 0, $$ where $j(q) = q^{-1} + 744 + 196884 q + \cdots$ is the modular $j$-invariant. Since $f(q)$ is invariant under the Atkin-Lehner operator, and the image of $j(q)$ is $j_N(q) = j(q^N)$, we also have $\Phi_N(f(q),j_N(q)) = 0$.

[2] [3] [5] [7] [11] [13] [17] [19] [23] [29] [31] [37] [41] [43] [47] [53] [59] [61] [67] [71]
[73] [79] [83] [89] [97] [101] [103] [107] [109] [113] [127] [131] [137] [139] [149] [151] [157] [163] [167] [173]
[179] [181] [191] [193] [197] [199] [211] [223] [227] [229] [233] [239] [241] [251] [257] [263] [269] [271] [277] [281]
[283] [293] [307] [311] [313] [317] [331] [337] [347] [349] [353] [359] [367] [373] [379] [383] [389] [397] [401] [409]
[419] [421] [431] [433] [439] [443] [449] [457] [461] [463] [467] [479] [487] [491] [499] [503] [509] [521] [523] [541]
[547] [557] [563] [569] [571] [577] [587] [593] [599] [601] [607] [613] [617] [619] [631] [641] [643] [647] [653] [659]
[661] [673] [677] [683] [691] [701] [709] [719] [727] [733] [739] [743] [751] [757] [761] [769] [773] [787] [797] [809]
[811] [821] [823] [827] [829] [839] [853] [857] [859] [863] [877] [881] [883] [887] [907] [911] [919] [929] [937] [941]
[947] [953] [967] [971] [977] [983] [991] [997] [1009] [1013] [1019] [1021] [1031] [1033] [1039] [1049] [1051] [1061] [1063] [1069]
[1087] [1091] [1093] [1097] [1103] [1109] [1117] [1123] [1129] [1151] [1153] [1163] [1171] [1181] [1187] [1193] [1201] [1213] [1217] [1223]