Coding theory: algebraic geometry of linear algebra

David R. Kohel

§1. Introduction.

Let \(R \) be a ring whose underlying set we call the alphabet. A linear code \(C \) over \(R \) is a free \(R \)-module \(V \) of rank \(k \), an embedding \(\iota : V \rightarrow U \) in a free module \(U \) of rank \(n \), and a choice of basis \(\mathcal{B} = \{ e_i \} \) for \(U \). The code is said to have block length \(n \) and dimension \(k \). We will also assume that the cokernel \(W \) of \(\iota \) is free over \(R \). We will be slightly sloppy and identify the image of \(V \) in \(U \) with the code \(C \). We define \(|| \cdot || : U \rightarrow \mathbb{N} \) by

\[
||x|| = |\{ i : x_i \neq 0 \}|, \text{ where } x = \sum_i x_i e_i \in U.
\]

We call \(||x|| \) the weight of \(x \), and define a distance function \(d(\cdot, \cdot) : U \times U \rightarrow \mathbb{N} \) by setting \(d(x, y) = ||x - y|| \). The minimum distance \(d \) of the code \(C \) is the minimum of \(d(x, y) \) for \(x \) and \(y \) in \(C \). By the linearity of \(C \), we have that \(d \) is the minimum weight of a nonzero codeword. We call a linear code \(C \) with parameters \(n, k \) and \(d \) a linear \([n, k, d]\)-code.

Consider the exact sequence of \(R \)-modules

\[
0 \rightarrow V \xrightarrow{\iota} U \xrightarrow{\pi} W \rightarrow 0
\]

By means of choices of bases for \(V \) and \(W \) we can represent \(\iota \) and \(\pi \) by matrices \(G \) and \(H \), the generator matrix and the parity check matrix, respectively.

The main problems of study in coding theory are:

1. Good encoding and decoding algorithms for families of codes.
2. Proving the existence, or nonexistence, of linear \([n, k, d]\)-codes over \(R \) of given parameters.
3. Construction of families of codes which are asymptotically “good” as \(n \) goes to infinity.
4. Computing the weight enumerator polynomials

\[
w(z) = w_C(z) = \sum_i A_i z^i = \sum_{x \in C} q^{||x||},
\]
for C lying in a family of codes. (In some families of algebraic-geometric codes, the codewords of a given weight are points on an algebraic variety and can be effectively computed.)

§2. Equivalence of codes.

Let $C = (\iota: U \to V, \mathfrak{B})$ and $C' = (\iota': U' \to V', \mathfrak{B}')$ be codes. An isomorphism of codes is an isomorphism $\phi: U \to U'$ of R-modules which preserves weights and such that $\phi(\iota(V)) = \iota'(V')$. Note that $\varphi(\mathfrak{B})$ need not equal \mathfrak{B}'; the weight preserving condition only requires that the linear subspaces $\{R^* e_i\}$ are permuted. An automorphism of codes is an isomorphism of a code with itself. The automorphism group of C is a subgroup of the semidirect product of the permutation group S_n and $(R^*)^n$.

§3. Projective systems.

Let M be a free R-module of dimension k and let S be a subset of n points (which need not be distinct) such that S lies in no hyperplane of V. We call the pair (M, S) a linear system over R, and set

$n = |S|, \quad k = \text{rank}(M), \quad d = n - \max \limits_{H} |S \cap H| \geq 1,$

where H runs over all hyperplanes of M. We define an isomorphism of linear systems (M, S) and (M', S') to be an R-module isomorphism $M \to M'$ taking S onto S'.

Theorem 0.1 The isomorphism classes of linear $[n, k, d]$-codes are in bijective correspondence with the isomorphism classes of (M, S) with parameters n, k and d.

Before proving the theorem, we define a projective system by letting

$\mathbb{P} = \mathbb{P}(M) = \left(M - \bigcup_{a \in R} aM \right) / R^*$,

and \mathcal{P} be the image of S in \mathbb{P}. We call $(\mathbb{P}, \mathcal{P})$ a projective system, and define

$n = |\mathcal{P}|, \quad k = \text{dim}(\mathbb{P}) + 1, \quad d = n - \max \limits_{H} |\mathcal{P} \cap H|.$

We say that a code is nondegenerate if C is not contained in U_i for any of the n canonical hyperplanes U_i of U generated by $\{e_1, \ldots, \hat{e}_i, \ldots, e_n\} \subseteq \mathfrak{B}$. 2
Theorem 0.2 The set of isomorphism classes of nondegenerate R-linear $[n, k, d]$-codes are in bijective correspondence with projective systems over R with parameters n, k, and d.

Proof of Theorem 0.1. Let $V = M^*$ and define $V \rightarrow U = R^n$ by

$$\varphi \mapsto (\varphi(P_1), \varphi(P_2), \ldots, \varphi(P_n)).$$

Conversely, given a code $(\iota : U \rightarrow V, \mathcal{B})$, the basis $\mathcal{B} = \{e_i\}$ determines a dual basis $\{e_i^*\}$ of U^* which restricts to elements of $M = V^*$.

The second theorem follows easily. Note that the degeneracy of a code corresponding to (M, S) is just the multiplicity of $(0, 0, \ldots, 0)$ in S.

Exercise. Set $||H|| = n - |H \cap P|$ and verify that $w(z) = 1 + (q - 1) \sum_H z^{||H||}$, where q is the size of the alphabet.

Example. Let $R = F_4$ and let E be the elliptic curve given by

$$Y^2Z + YZ^2 = X^3$$

in \mathbb{P}^2. Then

$$E(F_4) = \{(0 : 1 : 0), (0 : 0 : 1), (0 : 1, 1), (1 : \alpha : 1), (\alpha : \alpha : 1), (\alpha^2 : \alpha : 1), (\alpha : \alpha^2 : 1), (\alpha^2 : \alpha^2 : 1)\},$$

where α is a generator for F_4^*.

To turn this into a linear code, we make some ugly choices... We lift these points back to $M = F_4^3$ and set $U = F_4^9$. Then with the basis $\{x, y, z\}$ for $V = M^*$, we have $V \rightarrow U$ given by the generator matrix

$$G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & \alpha & \alpha & \alpha^2 & \alpha^2 \\
1 & 0 & 1 & \alpha & \alpha^2 & \alpha & \alpha^2 & \alpha & \alpha^2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}.$$

We now determine directly that the weight enumerator polynomial for C is $1 + 4z^6 + 3z^8$. In particular, the minimum distance is 6. Thus we have constructed a linear $[9, 3, 6]$ code.

§4. Duals of codes.
The dual of a linear code C is defined to be the linear subspace

$$C^\perp = \{ x \in U : x \cdot y = 0 \text{ for all } y \in C \}.$$

The block length of the dual code is still n, and the dimension of the code is $n-k$. The MacWilliams identity relates the weight enumerator polynomials of C and C^\perp. We have

$$w_{C^\perp}(z) = q^{-k} w_C \left(\frac{1 - z}{1 - (q - 1)z} \right)$$

The weight enumerator polynomial of C^\perp in the example above is then

$$w_{C^\perp}(z) = 1 + 5z^3 + 11z^4 + 24z^5 + 8z^6 + 11z^7 + 4z^8,$$

and C^\perp is a linear $[9,6,3]$-code.

Notice that in this example the sum $k + d$ is equal to n. For any linear code we have the following general bound.

Theorem 0.3 (Singleton bound) For any linear $[n,k,d]$-code $k + d \leq n + 1$.

Proof. Consider any $k - 1$ points in $\mathbb{P}(V) = \mathbb{P}^{k-1}$. Necessarily they lie in a hyperplane. Thus by definition of a projective system,

$$k - 1 \leq \max_H |P \cap H| = n - d.$$

§5. **Line bundles on X**

In order to prove the following theorem, we introduce line bundles on a variety X.

Theorem 0.4 Let X be a curve, let T be a subset of $X(R)$ of cardinality n, and let L be a line bundle on X of degree a. Let s_1, \ldots, s_k be a basis for the global sections of L, and assume that the induced morphism $\varphi : X \to \mathbb{P}^{k-1}$ is an embedding. Then the projective system $(\mathbb{P}^{k-1}(R), P)$, where $P = \varphi(T)$, determines a linear $[n,k,d]$-code with parameters

$$k \geq a - g + 1 \quad \text{and} \quad d \geq n - a.$$

In particular, $k + d \geq n + 1 - g$.

4
Note 1. Our elliptic curve example was such an example with $a = 3$, $g = 1$, and $P = E(\mathbb{F}_4)$ of cardinality 9.

Note 2. A line bundle \mathcal{L} satisfying the conditions of the theorem is said to be very ample.

Let \mathcal{O}_X be the sheaf of functions on X, i.e. for each open subset U of X, $\mathcal{O}_X(U)$ is the ring of rational polynomial maps $U \to R$.

A sheaf \mathcal{F} of \mathcal{O}_X-modules is defined to be a sheaf on X such that for each open subset U of X, the group $\mathcal{L}(U)$ is an $\mathcal{O}_X(U)$ module, and for each inclusion of open sets $V \to U$ the homomorphism $\mathcal{L}(U) \to \mathcal{L}(V)$ is compatible with the ring homomorphism $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$, i.e. $\mathcal{L}(U) \to \mathcal{L}(V)$ becomes a homomorphism of $\mathcal{O}_X(U)$-modules.

A line bundle \mathcal{L} (or invertible sheaf) is defined to be a sheaf of \mathcal{O}_X-modules on X such that there exists a covering of X by open sets U such that $\mathcal{L}|_U$ is isomorphic to $\mathcal{O}_X|_U$.

In short, a line bundle is defined by the conditions that

1. For each open set U in a covering of X, $\mathcal{L}(U)$ is isomorphic to an $\mathcal{O}_X(U)$-module.
2. The inclusions $\mathcal{L}(U \cap V) \subseteq \mathcal{L}(U)$ and $\mathcal{L}(U \cap V) \subseteq \mathcal{L}(V)$ determine how the modules glue together.

Sketch of proof. The theorem is proved with the following steps.

1. The dimension k of $\mathcal{L}(X)$ over R is at least $a - g + 1$ by the Riemann-Roch theorem.
2. The global sections s_1,\ldots,s_k of $\mathcal{L}(X)$ determine an embedding as follows. For each set U in a cover of X, fix an isomorphism $\mathcal{L}(U) \cong \mathcal{O}_X(U)$. Then we can define

 $$X \xrightarrow{\varphi} \mathbb{P}^{k-1}.$$
 $$P \longmapsto (s_1(P) : \cdots : s_k(P)).$$

 Since changing the isomorphism is equivalent to multiplying each s_i by a unit in $\mathcal{O}_X(U)$, this gives a well-defined map to \mathbb{P}^{k-1}.
3. Apply the equivalence of projective systems and codes. The minimum distance of the code is defined to be

 $$d = n - \max_H |T \cap H|.$$
Over an algebraically closed field R, by Bezout’s theorem the cardinality of $\varphi(X(R)) \cap H$, counted with multiplicity, is equal to a for any hyperplane H. Over general R we may get lucky and a may be smaller, but we have a lower bound $d \geq n - a$.