Computing Humbert Surfaces

David Gruenewald
davidg@maths.usyd.edu.au

The University of Sydney

AustMS Conference 2007
Outline

Humbert surfaces
 Definitions
 Algebraic models

Computing Humbert surfaces
 Degree formula
 Power series
 Linear algebra
 Runtime analysis
 Example

Humbert intersections
 Quaternion orders
 Computing Shimura curves
 Example
The Siegel upper half plane

Definition
The Siegel upper half plane of degree g is

$$\mathcal{H}_g = \{ \tau \in \text{Mat}_{g \times g}(\mathbb{C}) \mid t\tau = \tau, \quad \text{Im}(\tau) > 0 \}.$$

- Each $\tau \in \mathcal{H}_g$ corresponds to a PPAV A_{τ}/\mathbb{C} with period matrix $(\tau \ I_g) \in \text{Mat}_{g \times 2g}(\mathbb{C})$.
- $A_{\tau} \cong A_{\tau'} \iff \exists M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{Z})$ such that $\tau' = M \cdot \tau := (a\tau + b)(c\tau + d)^{-1}$.
- $A_g = \text{Sp}_{2g}(\mathbb{Z}) \backslash \mathcal{H}_g$ is a moduli space for dimension g PPAV’s.
- $\dim A_g = \frac{1}{2}g(g + 1)$. In particular, $\dim A_2 = 3$ and A_2 is called the Siegel modular threefold.
Extra endomorphisms

Let A be a PPAS ($g = 2$). Then $\text{End}(A)$ is an order in $\text{End}(A) \otimes \mathbb{Q}$ which isomorphic to one of the following algebras:

1. quartic CM field
2. indefinite quaternion algebra over \mathbb{Q}
3. real quadratic field
4. \mathbb{Q}

The irreducible components of the corresponding moduli spaces in \mathcal{A}_2 which have “extra endomorphisms” are known as

1. CM points
2. Shimura curves
3. Humbert surfaces
Humbert’s equation

Humbert showed that any \(\begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix} \in A_2 \) satisfying the equation

\[
k\tau_1 + \ell\tau_2 - \tau_3 = 0
\]

defines a Humbert surface \(H_\Delta \) of discriminant \(\Delta = 4k + \ell > 0 \).

Example

\(H_1 = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_3 \end{pmatrix} \right\} = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_3 \end{pmatrix} \right\} \), the set of abelian varieties which split as a product of elliptic curves.

Task: Find “useful” algebraic models for \(H_\Delta \).
Torelli says that the map $C \mapsto \text{Jac}(C)$ defines a birational map between \mathcal{M}_2, the moduli space of genus 2 curves and \mathcal{A}_2 (In fact $\mathcal{M}_2 \cong \mathcal{A}_2 - H_1$).

The function field of \mathcal{A}_2 (and hence \mathcal{M}_2) is $\mathbb{C}(j_1, j_2, j_3)$ where j_i are the absolute Igusa invariants.

There exists an irreducible polynomial $H_\Delta(j_1, j_2, j_3)$ whose zero set is the Humbert surface of discriminant Δ.

Unfortunately, working with j_i is impractical (enormous degrees, giant coefficients).

Solution: add some level structure.
Runge uses level $\Gamma^*(2, 4)$ structure, with four theta functions:

$$\theta \left[\begin{array}{c} a \\ (0, 0) \end{array} \right] (2\tau), \ a \in \mathbb{Z}^2/2\mathbb{Z}^2$$

where

$$\theta \left[\begin{array}{c} m' \\ m'' \end{array} \right] (\tau) = \sum_{x \in \mathbb{Z}^2} e^{2\pi i \left(\frac{1}{2} (x + \frac{m'}{2}) \cdot \tau \cdot t (x + \frac{m'}{2}) + (x + \frac{m'}{2}) \cdot t (\frac{m''}{2}) \right)}$$

are classical theta functions of half integral characteristics determined by values $m', m'' \in \mathbb{Z}^2/2\mathbb{Z}^2$.
Algebraic models

Rosenhain model

We use level $\Gamma(2)$-structure with three functions

\[
\lambda_1(\tau) = \left(\frac{\theta[0 0] \theta[1 0]}{\theta[0 1] \theta[0 1]} \right)^2, \\
\lambda_2(\tau) = \left(\frac{\theta[0 0] \theta[1 1]}{\theta[0 1] \theta[1 1]} \right)^2, \\
\lambda_3(\tau) = \left(\frac{\theta[0 0] \theta[1 1]}{\theta[1 1] \theta[1 1]} \right)^2
\]

called Rosenhain invariants. These generate the function field of $A_2(2) = \Gamma(2) \backslash \mathcal{H}_2$.
Relation to genus 2 curves

- Given a genus 2 curve $C : y^2 = \prod_{i=1}^{6}(x - u_i)$ we can send three of the u_i to $0, 1, \infty$ via a fractional linear transformation to get an isomorphic curve with a Rosenhain model

$$y^2 = x(x - 1)(x - t_1)(x - t_2)(x - t_3).$$

The t_i are called Rosenhain invariants.

- $(0, 1, \infty, t_1, t_2, t_3)$ determines an ordering of the Weierstrass points and a level 2 structure on $\text{Jac}(C) (\in A_2(2))$.

- Let $M_2(2)$ denote the moduli space of genus 2 curves together with a full level 2 structure. Points of $M_2(2)$ are given by triples (t_1, t_2, t_3) where $t_i \neq t_j, 0, 1$ for all i, j.

- The forgetful morphism $M_2(2) \rightarrow M_2$ is a Galois covering of degree $720 = |S_6|$ where S_6 acts on the Weierstrass 6-tuple by permutations, followed by renormalising the first three to $(0, 1, \infty)$.

Runge’s method

Let $\phi : \mathcal{A}' \to \mathcal{A}_2$ be a finite cover of \mathcal{A}_2. Then

$$\phi^{-1}H_\Delta = \bigcup_{\text{finite}} H_\Delta^{(i)}.$$

Given functions $\{f_i(\tau)\}_{i=1,...,n}$ generating the function field of \mathcal{A}', compute $H_\Delta^{(i)}(f_1, \ldots, f_n)$ as follows:

1. Calculate the degree of the Humbert components $H_\Delta^{(i)}$ (given by a formula).

2. Compute power series representations of the $f_i(\tau)$ restricted to $H_\Delta \subset \mathcal{H}_2$.

3. Solve $H_\Delta^{(i)}(f_1, \ldots, f_n) = 0$ in the power series ring (truncated series with large precision) using linear algebra.

We shall consider the level 2 covering $\mathcal{A}_2(2) \to \mathcal{A}_2$.
Fortunately much arithmetic-geometric information is known about Humbert surfaces (van der Geer '82). The number of Humbert components in $A_2(2)$ is

$$m(\Delta) = \begin{cases}
10 & \text{if } \Delta \equiv 1 \mod 8 \\
15 & \text{if } \Delta \equiv 0 \mod 4 \\
6 & \text{if } \Delta \equiv 5 \mod 8
\end{cases}$$

(see Besser '98).
The degree of any Humbert component $H^{(i)}_{\Delta}$ in $\mathcal{A}_2(2)$ is given by a recursive formula

$$a_{\Delta} = \sum_{x>0} v(\Delta/x^2)m(\Delta/x^2)\deg \left(H^{(i)}_{\Delta/x^2} \right)$$

where

$$v(x) = \begin{cases}
1/2 & \text{if } x = 1 \\
1 & \text{if } x \geq 2, x \equiv 0, 1 \mod 4 \\
0 & \text{otherwise}
\end{cases}$$

Moreover, a_{Δ} is the coefficient of a certain modular form of weight $5/2$ for the group $\Gamma_0(4)$, which fortunately has a more elementary description due to a formula of Siegel:

$$a_{\Delta} - 24 \sum_{x \in \mathbb{Z}} \sigma_1 \left(\frac{\Delta - x^2}{4} \right) = \begin{cases}
12\Delta - 2 & \text{if } \Delta = \square \\
0 & \text{otherwise}
\end{cases}$$
Here are the degrees for small discriminants:

<table>
<thead>
<tr>
<th>Δ</th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>13</th>
<th>16</th>
<th>17</th>
<th>20</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{deg}(H_{\Delta}^{(i)})$</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>24</td>
<td>16</td>
<td>40</td>
<td>32</td>
<td>48</td>
<td>32</td>
<td>80</td>
<td>48</td>
</tr>
<tr>
<td>actual deg</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>40</td>
<td>24</td>
<td>48</td>
<td>32</td>
<td>80</td>
<td>48</td>
</tr>
</tbody>
</table>

Remarks

- When $\Delta \equiv 0 \pmod{4}$ we have

 $$m_{\text{Runge}}(\Delta) = 4 \times m_{\text{Rosenhain}}(\Delta)$$

 $$\Rightarrow \text{deg}_{\text{Runge}}(\Delta) = \frac{1}{4} \times \text{deg}_{\text{Rosenhain}}(\Delta).$$

- In reality (after computing these equations) the actual degrees of $H_{\Delta}^{(i)}(\lambda_j)$ are less than what the formula produces. For example

 $$H_1 : \{e_i - e_j = 0, i \neq j\} \cup \{e_i = 0\} \cup \{e_i - 1 = 0\}.$$
Write $\Delta = 4k + \ell$ where ℓ is either 0 or 1, and k is uniquely determined. The Humbert surface of discriminant Δ can be defined by the set

$$H_\Delta = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \left(\begin{array}{cc} \tau_1 & \tau_2 \\ \tau_2 & k\tau_1 + \ell\tau_2 \end{array} \right) \in \mathcal{H}_2 \right\}.$$

Restrict $\theta \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$ to H_Δ to get a Laurent series

$$\theta \left[\begin{array}{cc} a & b \\ c & d \end{array} \right](\tau) = \sum_{(x_1, x_2) \in \mathbb{Z}^2} e^{\pi i (x_1 c + x_2 d)} r (2x_1 + a)^2 + k(2x_2 + b)^2 q^2 (2x_1 + a)(2x_2 + b) + \ell(2x_2 + b)^2$$

where $r = e^{2\pi i \tau_1/8}$ and $q = e^{2\pi i \tau_2/8}$.
Unfortunately q has negative exponents. Substitute $r = pq$ to get

\[\sum_{(x_1, x_2) \in \mathbb{Z}^2} (-1)^{x_1 c + x_2 d} p^{(2x_1+a)^2+k(2x_2+b)^2} q^{(2x_1+a+2x_2+b)^2+(k+\ell-1)(2x_2+b)^2} \]

which is a power series with integer coefficients.

Using this representation one can compute the restriction of $\lambda_1, \lambda_2, \lambda_3$ to a Humbert surface as elements of $\mathbb{Z}[[p, q]]/(p^N, q^N)$ fairly easily.
Let $d = \deg(H_{\Delta}^{(i)})$. To find the algebraic relation $H_{\Delta}^{(i)}$:

▶ Compute all monomials of degree $\leq d$ in the variables e_1, e_2, e_3.

▶ Substitute $e_i = \lambda_i(p, q) \in \mathbb{Z}[[p, q]]/(p^N, q^N)$ in each monomial.

▶ Use linear algebra to find linear dependencies between the power series monomials $p^m q^n$ (compute null space of a big matrix).
With high enough precision there will be exactly one linear relation between the monomials e_i. This produces the polynomial relation $H^{(i)}_{\Delta}(e_1, e_2, e_3) = 0$ which defines a Humbert component.

Once one component has been determined, the others can easily be found by looking at the Rosenhain (S_6) orbit of a component.

These other components will turn out to be useful when we look at Shimura curves.
Runtime analysis

- There are:
 - \(\binom{d+3}{3} = O(d^3)\) monomials to be evaluated
 - \(O(N^2)\) coefficients of evaluated power series expressions of precision \(N\).

- Runtime cost is dominated by the nullspace calculation: \(O(d^6 N^2) \geq O(d^9)\) to find a unique solution.

- Symmetries of the equation (arising from the fixed group of the humbert component) can be exploited to reduce the matrix size by a constant factor, giving a speedup by a constant factor.

- Not overly efficient, but at least it’s only a one time calculation.
Example

We calculate a component of H_5:

\[
\begin{align*}
\lambda_1 &= 1 + 16p^4q^8 + O(p^{12}q^{12}) \\
\lambda_2 &= 1 + 4q^4 + 8q^8 - 8p^4q^4 - 24p^4q^8 + 4p^8q^8 + 48p^8q^8 + O(p^{12}q^{12}) \\
\lambda_3 &= 1 + 4q^4 + 8q^8 + 8p^4q^4 + 40p^4q^8 + 4p^8q^8 + 48p^8q^8 + O(p^{12}q^{12})
\end{align*}
\]

Using power series with precision 65, we compute the Humbert component

\[
\begin{align*}
e_2^2e_3^2 - 2e_2^2e_3^3 + e_2^2e_3^4 + 2e_1e_2e_3^3 - 2e_1e_2e_3^4 - 2e_1e_2e_3^2 - 2e_1e_2e_3^2 + 4e_1e_2^2e_3^3 - 2e_1e_2e_3^2 \\
- 4e_1e_2^2e_3^3 - 2e_1e_2e_3^2 - 2e_1e_2e_3^2 + 4e_1^2e_2e_3^3 + 2e_1e_2e_3^2 + 2e_1e_2e_3^2 \\
+ 4e_1^2e_2e_3^2 + e_1^2e_2^2 - 2e_1^2e_2e_3^3 + e_1^2e_2^2e_3^2 - 2e_1^2e_3^3 - 2e_1^2e_2e_3 + 4e_1^2e_2e_3^2 - 2e_1^2e_2e_3^2 - 2e_1^2e_2e_3^2 \\
- 2e_1^3e_2^2e_3 - 2e_1^3e_2e_3^2 + e_1^3e_3^2 - 2e_1^3e_2e_3^2 + e_1^3e_2e_3^2 - 2e_1^3e_2e_3^2 + e_1^3e_2e_3^2
\end{align*}
\]
Application: Computing Shimura Curves
Let R be an order in an indefinite \mathbb{Q}-quaternion algebra A.

- R is a QM-order if $R = \text{End}(X)$ for some abelian surface X.

- Any $x \in A$ satisfies $x^2 - tx + n = 0$ where t, n are the reduced trace, norm respectively.

- $\Delta(x) = t(x)^2 - 4n(x)$ defines a discriminant form
 \[
 \Delta(x, y) = \frac{1}{2}(\Delta(x + y) - \Delta(x) - \Delta(y))
 .
 \]

- The discriminant $d(x_1, \ldots, x_4)$ of a module generated by x_1, \ldots, x_4 is defined to be the positive square root of
 \[
 d(x_1, \ldots, x_4)^2 = -\det(t(x_i x_j))
 .
 \]
Theorem (Runge ’99)

1. Any QM-order can be written as $R = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\beta + \mathbb{Z}\alpha\beta$ such that the discriminant matrix

$$S_\Delta = \begin{pmatrix} \Delta(\alpha) & \Delta(\alpha, \beta) \\ \Delta(\alpha, \beta) & \Delta(\beta) \end{pmatrix}$$

is positive definite. The discriminant of R equals $\det(S_\Delta)/4$.

2. A change of basis corresponds to changing the discriminant matrix to $t_g S_\Delta g$ for some $g \in \text{GL}_2(\mathbb{Z})$. ⇒ can assume discriminant matrix is reduced.

3. If two orders have the same discriminant matrix which is primitive (gcd(entries) = 1) then the corresponding Shimura curves are isomorphic.
Theorem (Hashimoto '95, Runge '99)

Let $\mathcal{O} = \mathbb{Z}[\omega]$ be a quadratic order of discriminant Δ. Let S_Δ be a discriminant matrix of a QM order R. The following are equivalent:

1. Δ is primitively represented by S_Δ.
2. There exists an embedding $\mathcal{O} \hookrightarrow R$ such that $R \cap \mathbb{Q}(\omega) = \mathcal{O}$.
3. A Shimura curve \mathcal{C} with QM order R is contained in H_Δ.

If we work in a finite cover, we have

$$\mathcal{C}^{(h)} \subset H^{(i)}_{\Delta(\alpha)} \cap H^{(j)}_{\Delta(\beta)}$$

if and only if we can write

$$^{t}g S_\Delta g = \begin{pmatrix} \Delta(\alpha) & * \\ * & \Delta(\beta) \end{pmatrix}$$

for some $g \in \text{GL}_2(\mathbb{Z})$.
Example

\(H_5 \cap H_8 \) contains four Shimura curves \(C_S \):

<table>
<thead>
<tr>
<th>Discriminant matrix (S)</th>
<th>QM-order discriminant (= \det(S)/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\begin{pmatrix} 5 & 0 \ 0 & 8 \end{pmatrix}))</td>
<td>10</td>
</tr>
<tr>
<td>((\begin{pmatrix} 5 & 2 \ 2 & 8 \end{pmatrix}))</td>
<td>9</td>
</tr>
<tr>
<td>((\begin{pmatrix} 5 & 4 \ 4 & 8 \end{pmatrix}) \sim (\begin{pmatrix} 5 & 1 \ 1 & 5 \end{pmatrix}))</td>
<td>6</td>
</tr>
<tr>
<td>((\begin{pmatrix} 5 & 6 \ 6 & 8 \end{pmatrix}) \sim (\begin{pmatrix} 1 & 0 \ 0 & 4 \end{pmatrix}))</td>
<td>4</td>
</tr>
</tbody>
</table>

- This intersection was first computed by Hashimoto and Murabayashi (1995).
Computing intersections

- For intersections of Humbert components $H_{\Delta_i}(e_1, e_2, e_3)$ we can find plane affine models simply by taking resultants with respect to e_1.
- As we are working with coordinates in $\mathcal{M}_2(2) = \mathcal{A}_2(2) - H_1$, we will not be able to compute any Shimura curves in H_1.
- S_6 acts on Humbert components, hence acts on their intersections producing isomorphic curves.
- Take one curve from each S_6-orbit. Each of these intersections is a component of a Shimura curve C_S for some discriminant matrix S.
Example

In our $H_5 \cap H_8$ example, there are three non-equivalent intersections:

\[C_1 : \text{a genus 1 curve} \]
\[C_2 : \text{a genus 3 hyperelliptic curve} \]
\[C_3 : \text{a genus 3 non-hyperelliptic curve} \]

and the Shimura curves in $\mathcal{M}_2(2)$ are

\[C_{\binom{5}{0}0}, C_{\binom{5}{2}2} \text{ and } C_{\binom{5}{1}1} \]

so there is a one-one correspondence between the C_i and the C_S, to be determined.
Look at other Humbert intersections with “related” discriminants. Write $\mathcal{D}(a, b)$ for the set of discriminant matrices of QM-orders of Shimura curves in $H_a \cap H_b$. We have

\[
\begin{align*}
\mathcal{D}(5, 5) &= \{ (\begin{array}{cc} 5 & 1 \\ 1 & 5 \end{array}), (\begin{array}{cc} 4 & 2 \\ 2 & 5 \end{array}) \} \\
\mathcal{D}(4, 5) &= \{ (\begin{array}{cc} 4 & 0 \\ 0 & 5 \end{array}), (\begin{array}{cc} 4 & 2 \\ 2 & 5 \end{array}) \} \cup \{ (\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array}) \} \\
\mathcal{D}(5, 9) &= \{ (\begin{array}{cc} 5 & 1 \\ 1 & 9 \end{array}), (\begin{array}{cc} 5 & 2 \\ 2 & 8 \end{array}), (\begin{array}{cc} 4 & 0 \\ 0 & 5 \end{array}) \} \cup \{ (\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array}) \} \\
\mathcal{D}(5, 8) &= \{ (\begin{array}{cc} 5 & 0 \\ 0 & 8 \end{array}), (\begin{array}{cc} 5 & 2 \\ 2 & 8 \end{array}), (\begin{array}{cc} 5 & 1 \\ 1 & 5 \end{array}) \} \cup \{ (\begin{array}{cc} 1 & 0 \\ 0 & 4 \end{array}) \}
\end{align*}
\]

- Since $\mathcal{D}(4, 5) \cap \mathcal{D}(5, 5) = \{ (\begin{array}{cc} 4 & 2 \\ 2 & 5 \end{array}) \}$ we can identify the corresponding curve. Hence we also know $(\begin{array}{cc} 5 & 1 \\ 1 & 5 \end{array})$ (and $(\begin{array}{cc} 4 & 0 \\ 0 & 5 \end{array})$).
- Similarly $(\begin{array}{cc} 5 & 2 \\ 2 & 8 \end{array})$ can be matched by $\mathcal{D}(5, 8) \cap \mathcal{D}(5, 9) = \{ (\begin{array}{cc} 5 & 2 \\ 2 & 8 \end{array}) \}$.
In the end we find that:

\[C_{\begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}} : \text{ the genus 1 curve} \]
\[C_{\begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}} : \text{ the genus 3 hyperelliptic curve} \]
\[C_{\begin{pmatrix} 5 & 0 \\ 0 & 8 \end{pmatrix}} : \text{ the genus 3 non-hyperelliptic curve} \]

Thanks for listening!