Computing “isogeny graphs” using CM lattices

David Gruenewald
GREYC/LMNO
Université de Caen
GeoCrypt, Corsica
22nd June 2011
Motivation for computing isogenies

- Point counting.
- Computing CM invariants.
- Endomorphism ring computations.
- Transporting discrete log problems.
- Visiting Corsica...
History of isogenies

Genus 1, we have Vélu’s formulae.

Genus 2, from a computational perspective we had:

- Richelot $(2, 2)$-isogenies
- $(3, 3)$-isogenies (Carls-Kohel-Lubicz, Bröker-G.-Lauter)

And, as the CHIC project has progressed:

\rightarrow (l^2, l^2)-isogenies for $l \lesssim 40$ (Lubicz-Robert)

\Rightarrow (l, l)-isogenies for $l \lesssim 1000$ now possible using the Magma package AVIsogenies (Bisson-Cosset-Robert)
Other types of isogenies:

- Explicit endomorphisms for RM families:
 - $\sqrt{2}$ in genus 2 (Bending, Gaudry, Mestre,...)
 - $\frac{1+\sqrt{5}}{2}$ in genus 2 (Kohel-Smith, Takashima,...)
 - $\zeta_{2g+1} + \zeta_{2g+1}^{-1}$ in genus g (Mestre, Smith, Tautz-Top-Verberkmoes,...)

- $(2,2,2)$-isogenies for generic genus 3 curves (Lehavi-Ritzenthaler)

- Ben Smith can tell you more and will undoubtedly find more!..
Let E be an elliptic curve over \mathbb{C}.

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda, \text{ where } \Lambda = \alpha_1\mathbb{Z} + \alpha_2\mathbb{Z} \subset \mathbb{C} \text{ is a lattice.}$$

In particular, $\{\alpha_1, \alpha_2\} \subset \mathbb{C}$ are \mathbb{R}-linearly independent, so one of

$$(\alpha_1/\alpha_2)^{\pm 1} \in \mathbb{H}_1 := \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}.$$

Order our basis $\langle \alpha_1, \alpha_2 \rangle$ so that $\alpha_1/\alpha_2 \in \mathbb{H}_1$.

Lattices of elliptic curves

isomorphisms
The set of lattices Λ_0 with ordered bases such that $\mathbb{C}/\Lambda_0 \cong E(\mathbb{C})$ is given by the orbit

$$\mathbb{C}^* \backslash \Lambda/\text{SL}_2(\mathbb{Z})$$

- **Left action**: rescale basis by $\lambda \in \mathbb{C}^*$
 \[\lambda \cdot \langle \alpha_1, \alpha_2 \rangle = \langle \lambda \alpha_1, \lambda \alpha_2 \rangle \]

- **Right action**: change basis by $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})$
 \[\langle \alpha_1, \alpha_2 \rangle \cdot M = \langle a\alpha_1 + b\alpha_2, c\alpha_1 + d\alpha_2 \rangle \]

In particular, $\langle \tau, 1 \rangle \cdot M \cong \langle M \cdot \tau, 1 \rangle$ where

$$M \cdot \tau := \frac{a\tau + b}{c\tau + d}$$

From this, we see the usual $\text{SL}_2(\mathbb{Z})$-action on the upper half plane.
An isogeny $\mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$ is induced by a \mathbb{C}-linear map $\varphi : \mathbb{C} \to \mathbb{C}$ with $\varphi \Lambda \subseteq \Lambda'$.

Fixing a basis for Λ' we can represent this by

$$R_\varphi = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{M}_2(\mathbb{Z}) \text{ with } ad - bc = n > 0.$$

The degree/kernel of the isogeny is given by the elementary divisors of R_φ.

$n = 1 \implies R_\varphi \in \text{SL}_2(\mathbb{Z})$ is an isomorphism, as expected.
Lattices of elliptic curves

“Isogeny graphs”

Usual definition of a T-isogeny graph:
- Vertices: isomorphism classes of elliptic curves
- Edges: isogenies of type T

“Equivalent” definition:
- Vertices: lattices upto homothety
- Edges: T-isogenies between lattices
Example: 2-isogeny graphs

For l prime, there are $l + 1$ cyclic l-isogenies

$$\mathcal{R}_l = \left\{ \begin{pmatrix} l & 0 \\ 0 & 1 \end{pmatrix} x \mid x \in \text{SL}_2(\mathbb{Z})/\Gamma_0(l) \right\}$$

where $\Gamma_0(l) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \mid c \equiv 0 \pmod{l} \right\}$

Up to isomorphism, the 2-isogenies can be represented by:

$$\mathcal{R}_2 = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\}$$

For a generic $\tau \in \mathbb{H}_1$ (the case where $\text{End}(\langle \tau, 1 \rangle) \cong \mathbb{Z}$) the isogeny graph is a 3-ary tree.
For a CM point $\tau \in \mathbb{H}_1$ (the case where $\text{End}(\langle \tau, 1 \rangle) \cong \mathcal{O}$ is an order in $\mathbb{Q}(\sqrt{-D})$) the isogeny graph is determined by $\text{Pic} (\mathcal{O})$

\[
\ker \varphi = a, \ [a^4] = [\mathcal{O}] \in \text{Pic}(\mathcal{O})
\]
Let A be a principally polarized (PP) abelian surface over \mathbb{C}.

$$A(\mathbb{C}) \cong \mathbb{C}^2 / \Lambda,$$

where $\Lambda \cong \mathbb{Z}^4$ is a PP lattice.

Such a lattice comes equipped with a symplectic basis (wrt the polarization). Using this basis we can then write $\Lambda = \Pi \mathbb{Z}^4$ where $\Pi = \langle \Pi_1 \Pi_2 \rangle \in \text{Mat}(2 \times 4, \mathbb{C})$ called the period matrix. This matrix satisfies the Riemann relations:

$$\Pi_2^t \Pi_1 - \Pi_1^t \Pi_2 = 0 \quad (\text{RR1})$$

$$i(\Pi_2^t \overline{\Pi_1} - \Pi_1^t \overline{\Pi_2}) > 0 \quad (\text{RR2})$$
The set of PP lattices Λ_0 for which $\mathbb{C}/\Lambda_0 \cong A(\mathbb{C})$ as PPAS’s is given by the orbit

$$GL_2(\mathbb{C}) \backslash \Lambda / Sp_4(\mathbb{Z})$$

- Left action: $\lambda \in GL_2(\mathbb{C})$ sends Π to $\lambda \Pi$
- Right action: $M \in Sp_4(\mathbb{Z})$ sends Π to $\Pi^t M$

(RR \Rightarrow) each orbit has a representative of the form $\langle \tau \ I \rangle$ where

$$\tau \in \mathbb{H}_2 := \{ Z \in M_2(\mathbb{C}) \mid ^tZ = Z \text{ and } \text{Im } Z > 0 \}$$

From this we derive the action of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp_4(\mathbb{Z})$ on $\tau \in \mathbb{H}_2$:

$$M \cdot \tau := (a\tau + b)(c\tau + d)^{-1}$$
Lattices of abelian surfaces

Isogenies

Let \(A = (\mathbb{C}^2/\Lambda, \chi) \) be a polarized abelian surface over \(\mathbb{C} \).

- An isogeny \(\varphi : \mathbb{C}^2/\Lambda \to \mathbb{C}^2/\Lambda' \) induces a \(\mathbb{C} \)-linear map \(\varphi : \mathbb{C}^2 \to \mathbb{C}^2 \) with \(\varphi \Lambda \subseteq \Lambda' \).

- Fixing a basis of \(\Lambda' \) we can represent this by \(R_\varphi \in \mathbb{M}_4(\mathbb{Z}) \), with \(\deg \varphi = \det R_\varphi = n > 0 \).

In fact,

\[
\varphi : (A, \chi) \to \mathbb{C}/\Lambda' = (A', \chi')
\]

is an isogeny of PAS’s, but not necessarily polarization preserving. (In general \(\chi \neq \varphi^* \chi' \))
(l, l)-isogenies

- Isogenies \(\varphi : A \rightarrow A' \) for which \(\ker \varphi \cong (\mathbb{Z}/l\mathbb{Z})^2 \) is a maximal Weil-isotropic \(l \)-subgroup of \(A[l] \) preserve the polarization class and are called \((l, l)\)-isogenies.

- For \(l \) prime there are

\[
l^3 + l^2 + l + 1
\]

\((l, l)\)-isogenies up to isomorphism, represented by:

\[
\mathcal{R}_{l,l}^{(2)} = \left\{ \text{diag}(l, l, 0, 0)x \mid x \in \text{Sp}_4(\mathbb{Z})/\Gamma_0^{(2)}(l) \right\}
\]

where \(\Gamma_0^{(2)}(l) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}_4(\mathbb{Z}) \mid c \equiv 0 \pmod{l} \right\} \).
For a generic $\tau \in \mathbb{H}_2$ (the case where $\text{End}(\langle \tau, I \rangle) \cong \mathbb{Z}$) the $(2, 2)$-isogeny graph is a 15-ary tree.
RM example - squiddy the 6-eyed octopus

Here’s part of the $(2, 2)$ isogeny graph of an RM lattice:
$\text{End}(\langle \tau, I \rangle) = \mathbb{Z}[\sqrt{2}]$
RM example - squiddy the 6-eyed octopus

Here’s part of the $(2, 2)$ isogeny graph of an RM lattice:
$$\text{End}(\langle \tau, I \rangle) = \mathbb{Z}[\sqrt{2}] = \text{Jac}(C)$$

where
$$C : \quad y^2 = x^6 - 4x^5 - 12x^4 + 2x^3 + 8x^2 + 8x - 7 \quad \text{over } \mathbb{C}$$
RM example - squiddy the 6-eyed octopus

Here’s part of the \((2, 2)\) isogeny graph of an RM lattice:

\[
\text{End}(\langle \tau, I \rangle) = \mathbb{Z}[\sqrt{2}] = \text{Jac}(C) \text{ where } C : y^2 = x^6 - 4x^5 - 12x^4 + 2x^3 + 8x^2 + 8x - 7 \text{ over } \mathbb{C}
\]
CM example: a \((3, 3)\)-isogeny graph

\[K = \mathbb{Q}[X]/(X^4 + 12X^2 + 18), \] cyclic Galois group, class number 2.

\[3\mathcal{O}_K = p^2 \Rightarrow \text{the two CM lattices with } \mathcal{O}_K\text{-multiplication are connected by a } (3, 3)\text{-isogeny}. \]

\[A_{27}, B_9, C_9, D_9, E_9, F_9 \text{ are the endomorphism rings of the nonmaximal \textquoteleft\textquoteleft leaf\textquoteright\textquoteright\ vertices (appearing with multiplicities } 18, 9, 6, 6, 6, 6 \text{ resp.) } 18 + 9 + 6 + 6 + 1 = 40 \text{ isogenous points.} \]
An ordinary PPAS over \mathbb{F}_q is the reduction of an abelian surface over \mathbb{C} having CM by an order in $K = \mathbb{Q}(\pi)$ where π is an ordinary Weil number of norm q^2.

To obtain an (l, l)-isogeny graph for PPAS’s over \mathbb{F}_q in the isogeny class given by $\pi \in K$, do the following:
Connection to isogeny graphs over finite fields

An ordinary PPAS over \mathbb{F}_q is the reduction of an abelian surface over \mathbb{C} having CM by an order in $K = \mathbb{Q}(\pi)$ where π is an ordinary Weil number of norm q^2.

To obtain an (l, l)-isogeny graph for PPAS’s over \mathbb{F}_q in the isogeny class given by $\pi \in K$, do the following:

1. Take a principally polarizable ideal class of \mathcal{O}_K: (a, ξ) where $\xi \in K$ is purely imaginary and $\xi a\bar{a} = \mathcal{D}_K^{-1}$, the inverse different. This is our starting point.
Connection to isogeny graphs over finite fields

An ordinary PPAS over \mathbb{F}_q is the reduction of an abelian surface over \mathbb{C} having CM by an order in $K = \mathbb{Q}(\pi)$ where π is an ordinary Weil number of norm q^2.

To obtain an (l, l)-isogeny graph for PPAS’s over \mathbb{F}_q in the isogeny class given by $\pi \in K$, do the following:

1. Take a principally polarizable ideal class of O_K: (a, ξ) where $\xi \in K$ is purely imaginary and $\xi a \overline{a} = \mathcal{D}_{K/\mathbb{Q}}^{-1}$, the inverse different. This is our starting point.

2. Compute a Frobenius basis $\Pi \mathbb{Z}^4$ for the rank four \mathbb{Z}-module a with respect to ξ; the symplectic form is

$$E : (x, y) \mapsto \text{Tr}_{K/\mathbb{Q}}(\xi \overline{x} y)$$

and we want the matrix of E to be $\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.
3. Compute \((l, l)\)-isogenous images:
 For each isogeny transformation \(M \in \mathcal{R}_{l,l}^{(2)}\):
 - Compute the isogenous period matrix
 \[
 \Pi' = \Pi^t M.
 \]
 The principally polarized CM lattice is \((\alpha', \xi') = (\Pi' \mathbb{Z}^4, l^{-1} \xi)\).
3. Compute \((l, l)\)-isogenous images:
 For each isogeny transformation \(M \in \mathcal{R}_{l, l}^{(2)}\):
 - Compute the isogenous period matrix
 \[
 \Pi' = \Pi^t M.
 \]
 The principally polarized CM lattice is \((\alpha', \xi') = (\Pi' \mathbb{Z}^4, l^{-1}\xi)\).
 - Test whether \(\pi\alpha' \subseteq \alpha'\).
 If true, this means that \(\pi, \overline{\pi} \in \text{End}(\alpha')\) and that the reduction of this isogenous PPAS \(\mathbb{C}^2/\Pi'\mathbb{Z}^4\) is defined over \(\mathbb{F}_q\).
 Throw away the lattices which fail the test.
3. Compute (l, l)-isogenous images:
 For each isogeny transformation $M \in \mathcal{R}_{l, l}^{(2)}$:

 ▶ Compute the isogenous period matrix

 \[\Pi' = \Pi^t M. \]

 The principally polarized CM lattice is $(a', \xi') = (\Pi'\mathbb{Z}^4, l^{-1}\xi)$.

 ▶ Test whether

 \[\pi a' \subset a'. \]

 If true, this means that $\pi, \overline{\pi} \in \text{End}(a')$ and that the reduction of this isogenous PPAS $\mathbb{C}^2/\Pi'\mathbb{Z}^4$ is defined over \mathbb{F}_q. Throw away the lattices which fail the test.

Recursively run algorithm on unexplored isomorphism classes of CM lattices. Isomorphism test:

\[(a, \xi) \cong (a', \xi') \iff \begin{cases}
 a' = \gamma a \\
 \xi' = (\gamma \overline{\gamma})^{-1} \xi
\end{cases} \quad (\exists \gamma \in K) \]
Disadvantages:

- We can compute complex approximations of absolute invariants for CM lattices, but constructing CM moduli over \mathbb{F}_q seems rather intractable.
- Slow

Advantages:
Disadvantages:

- We can compute complex approximations of absolute invariants for CM lattices, but constructing CM moduli over \mathbb{F}_q seems rather intractable.
- Slow

Advantages:

- Endomorphism rings of CM lattices are easy to compute (= multiplier ring of lattice)

Generalisations:

- Use a different set \mathcal{R} of isogeny transformations, not necessarily always polarization preserving (e.g. cyclic l-isogenies).
- Higher genus.
Example 1: our old friend $K = \mathbb{Q}[X]/(X^4 + 12X^2 + 18)$

$\text{Gal}(K/\mathbb{Q}) = C_4 = \langle \sigma \rangle$ and $\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/2\mathbb{Z}$.

Let $q = 127$. We have $K = \mathbb{Q}(\pi)$ where

$$\pi^4 + 28\pi^3 + 378\pi^2 + 28q\pi + q^2 = 0$$

is an ordinary Weil number.

$A_{27}, B_9, C_9, D_9, E_9, F_9$ are the endomorphism rings of the nonmaximal “leaf” vertices (appearing with multiplicities 18,9,6,6,6,6 resp.)
Example 1: our old friend $K = \mathbb{Q}[X]/(X^4 + 12X^2 + 18)$

$\text{Gal}(K/\mathbb{Q}) = C_4 = \langle \sigma \rangle$ and $\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/2\mathbb{Z}$. Let $q = 127$. We have $K = \mathbb{Q}(\pi)$ where

$$\pi^4 + 28\pi^3 + 378\pi^2 + 28q\pi + q^2 = 0$$

is an ordinary Weil number.

$A_{27}, B_9, C_9, D_9, E_9, F_9$ are the endomorphism rings of the nonmaximal “leaf” vertices (appearing with multiplicities $18, 9, 6, 6, 6, 6$ resp.) Of the six proper suborders, only F_9 contains π.
Example 1: our old friend $K = \mathbb{Q}[X]/(X^4 + 12X^2 + 18)$

$\text{Gal}(K/\mathbb{Q}) = C_4 = \langle \sigma \rangle$ and $\text{Cl}(\mathcal{O}_K) = \mathbb{Z}/2\mathbb{Z}$.

Let $q = 127$. We have $K = \mathbb{Q}(\pi)$ where

$$\pi^4 + 28\pi^3 + 378\pi^2 + 28q\pi + q^2 = 0$$

is an ordinary Weil number.

Lesson: graph structure alone is not sufficient information to determine the endomorphism ring.
Example 2: $K = \mathbb{Q}[X]/(X^4 + 22X + 73)$

$(3, 3)$-isogeny graph over \mathbb{F}_{1609}

$\text{Gal}(K/\mathbb{Q}) \cong \text{dihedral group of order } 8.$

Let $q = 1609$. We have $K = \mathbb{Q}(\pi) = \mathbb{Q}(\psi)$ where

$\pi^4 + 76\pi^3 + 2934\pi^2 + 76q\pi + q^2 = 0$ and

$\psi^4 + 32\psi^3 - 414\psi^2 + 32q\psi + q^2 = 0$ are ordinary Weil numbers.
Example 2: $K = \mathbb{Q}[X]/(X^4 + 22X + 73)$

$(3, 3)$-isogeny graph over \mathbb{F}_{1609}

$\text{Gal}(K/\mathbb{Q}) \cong \text{dihedral group of order 8}.$
Let $q = 1609$. We have $K = \mathbb{Q}(\pi) = \mathbb{Q}(\psi)$ where

$\pi^4 + 76\pi^3 + 2934\pi^2 + 76q\pi + q^2 = 0$ and

$\psi^4 + 32\psi^3 - 414\psi^2 + 32q\psi + q^2 = 0$ are ordinary Weil numbers.

Lesson: we can have cycles involving nonmaximal points (invertible ideals of norm l^2 can exist in non l-maximal orders).
Example 3: \(K = \mathbb{Q}[X]/(X^4 + 598X^2 + 70969) \)

(1, 2)-isogenies over \(\mathbb{F}_{3^7} \)

Let \(q = 3^7 \). We have \(K = \mathbb{Q}(\pi) \) where
\[
\pi^4 + 124\pi^3 + 7418\pi^2 + 124q\pi + q^2 = 0
\]
is an ordinary Weil number.

(2, 2)-isogeny graph:
Example 3: \(K = \mathbb{Q}[X]/(X^4 + 598X^2 + 70969) \)

(1, 2)-isogenies over \(\mathbb{F}_{3^7} \)

Let \(q = 3^7 \). We have \(K = \mathbb{Q}(\pi) \) where
\[
\pi^4 + 124\pi^3 + 7418\pi^2 + 124q\pi + q^2 = 0
\]
is an ordinary Weil number.

(1, 2)-isogeny graph:
Genus 3 isogeny graphs?
Genus 3 isogeny graphs? Perhaps at GeoCrypt 2013

Thanks for your attention.