Humbert Surfaces and Applications

David Gruenewald
davidg@maths.usyd.edu.au

eRISCS-ÉSIL, Université de la Méditerranée

Réunion CHIC, 6th October 2009
The Siegel upper half plane

Definition
The Siegel upper half plane of degree g is

$$\mathbb{H}_g = \{ \tau \in \text{Mat}_{g \times g}(\mathbb{C}) \mid t \tau = \tau, \ \text{Im}(\tau) > 0 \}.$$

Each $\tau \in \mathbb{H}_g$ corresponds to a PPAV A_τ/\mathbb{C} with period matrix $$(\tau \ I_g) \in \text{Mat}_{g \times 2g}(\mathbb{C}).$$

$A_\tau \cong A_{\tau'} \iff \exists M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{Z})$ such that $\tau' = M \cdot \tau := (a\tau + b)(c\tau + d)^{-1}.$

$A_g = \text{Sp}_{2g}(\mathbb{Z}) \backslash \mathbb{H}_g$ is a moduli space for dimension g PPAV's.

$\dim A_g = \frac{1}{2}g(g + 1)$. In particular, $\dim A_2 = 3$ and A_2 is called the Siegel modular threefold.
Extra endomorphisms

Let A be a PPAS $(g = 2)$. Then $\text{End}(A)$ is an order in $\text{End}(A) \otimes \mathbb{Q}$ which isomorphic to one of the following algebras:

(0) quartic CM field
(1) indefinite quaternion algebra over \mathbb{Q}
(2) real quadratic field
(3) \mathbb{Q}

The irreducible components of the corresponding moduli spaces in \mathcal{A}_2 which have “extra endomorphisms” are known as

(0) CM points
(1) Shimura curves
(2) Humbert surfaces
Humbert’s equation

Humbert showed that any \(\begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix} \in A_2 \) satisfying the equation

\[k\tau_1 + \ell\tau_2 - \tau_3 = 0 \]

defines a Humbert surface \(H_\Delta \) of discriminant \(\Delta = 4k + \ell > 0 \).

Example

\[H_1 = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \begin{pmatrix} \tau_1 & \tau_3 \\ \tau_3 & \tau_3 \end{pmatrix} \right\} = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_3 \end{pmatrix} \right\}, \]

the set of abelian varieties which split as a product of elliptic curves.

Task: Find “useful” algebraic models for \(H_\Delta \).
Algebraic models

- The function field of \mathcal{A}_2 (and hence \mathcal{M}_2) is $\mathbb{C}(j_1, j_2, j_3)$ where j_i are the absolute Igusa invariants.

- There exists an irreducible polynomial $H_\Delta(j_1, j_2, j_3)$ whose zero set is the Humbert surface of discriminant Δ.

Unfortunately, working with j_i is impractical (enormous degrees, giant coefficients).

Solution: add some level structure.
Algebraic models

Consider theta functions of half integral (even) characteristics

$$\theta \left[\begin{bmatrix} m' \\ m'' \end{bmatrix} \right] (\tau) = \sum_{x \in \mathbb{Z}^2} e^{2\pi i \left(\frac{1}{2} (x + \frac{m'}{2}) \cdot \tau \cdot t (x + \frac{m'}{2}) + (x + \frac{m'}{2}) \cdot t \left(\frac{m''}{2} \right) \right)}$$

where $m', m'' \in \mathbb{Z}^2/2\mathbb{Z}^2$ satisfy $m' \cdot t m'' = 0 \pmod{2}$.

The quotients $\theta[m'][m'']/\theta[n'][n'']$ are modular functions for $\Gamma(4, 8)$ where

$$\Gamma(4, 8) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma(4) \mid (\alpha^t \beta)_0 \equiv (\gamma^t \delta)_0 \equiv 0 \pmod{8} \right\} \supset \Gamma(8)$$

They are useful “building blocks” for constructing modular forms and functions with less level structure.

For example, $j_1 = I_2^5/I_{10}, \ j_2 = I_2^3 I_4/I_{10}, \ j_3 = I_2^2 I_6/I_{10}$ where

$$I_{10} = \prod_{\text{even}} \theta \left[\begin{bmatrix} m' \\ m'' \end{bmatrix} \right]^2.$$
Runge uses level $\Gamma^*(2, 4)$-structure, with four theta functions:

$$f_a = \theta \left[\begin{array}{c} a \\ (0, 0) \end{array} \right] (2\tau), \ a \in \mathbb{Z}^2/2\mathbb{Z}^2$$

The homogeneous coordinate ring for $\mathcal{A}_2^*(2, 4) = \Gamma^*(2, 4) \setminus \mathbb{H}_2$ is rational, generated by the four functions $\{f_a\}$.
A choice of $\Gamma(2)$-structure is given by three functions

\[
\lambda_1(\tau) = \left(\frac{\theta[0 0] \theta[0 0]}{\theta[1 1] \theta[0 0]} \right)^2,
\]
\[
\lambda_2(\tau) = \left(\frac{\theta[0 0] \theta[1 1]}{\theta[0 1] \theta[1 1]} \right)^2,
\]
\[
\lambda_3(\tau) = \left(\frac{\theta[0 0] \theta[1 1]}{\theta[1 1] \theta[1 1]} \right)^2,
\]

called Rosenhain invariants. These generate the function field of \(\mathcal{A}_2(2) = \Gamma(2) \backslash \mathbb{H}_2 \).
Runge’s method

Let $\phi : \mathcal{A}' \rightarrow \mathcal{A}_2$ be a finite cover of \mathcal{A}_2. Then

$$\phi^{-1} H_\Delta = \bigcup_{\text{finite}} H^{(i)}_\Delta.$$

Given functions $\{f_i(\tau)\}_{i=1,\ldots,n}$ generating the function field of \mathcal{A}', compute $H^{(i)}_\Delta(f_1, \ldots, f_n)$ as follows:

1. Calculate the degree of the Humbert components $H^{(i)}_\Delta$ (using a formula of van der Geer ’82).

2. Compute power series representations of the $f_i(\tau)$ restricted to $H_\Delta \subset \mathbb{H}_2$.

3. Solve $H^{(i)}_\Delta(f_1, \ldots, f_n) = 0$ in the power series ring (truncated series with large precision) using linear algebra.
Step 1 - degree formula (Rosenhain model)

Fortunately much arithmetic-geometric information is known about Humbert surfaces (van der Geer ’82). The number of Humbert components in $\mathcal{A}_2(2)$ is

$$m(\Delta) = \begin{cases}
10 & \text{if } \Delta \equiv 1 \mod 8 \\
15 & \text{if } \Delta \equiv 0 \mod 4 \\
6 & \text{if } \Delta \equiv 5 \mod 8
\end{cases}$$

(see Runge ’99).
Here are the degrees for small discriminants:

<table>
<thead>
<tr>
<th>Δ</th>
<th>1</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>13</th>
<th>16</th>
<th>17</th>
<th>20</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\deg(H^{(i)}_\Delta)$</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>40</td>
<td>24</td>
<td>48</td>
<td>32</td>
<td>80</td>
<td>48</td>
</tr>
</tbody>
</table>
Step 2 - power series

Write $\Delta = 4k + \ell$ where ℓ is either 0 or 1, and k is uniquely determined. The Humbert surface of discriminant Δ can be defined by the set

$$H_\Delta = \text{Sp}_4(\mathbb{Z}) \setminus \left\{ \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & k\tau_1 + \ell\tau_2 \end{pmatrix} \in \mathbb{H}_2 \right\}.$$

Restrict $\theta \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$ to H_Δ to get a Laurent series

$$\theta \left[\begin{array}{cc} a & b \\ c & d \end{array} \right](\tau) = \sum_{(x_1,x_2) \in \mathbb{Z}^2} e^{\pi i (x_1 c + x_2 d)} r (2x_1 + a)^2 + k(2x_2 + b)^2 q^{2(2x_1 + a)(2x_2 + b) + \ell(2x_2 + b)^2}$$

where $r = e^{2\pi i \tau_1/8}$ and $q = e^{2\pi i \tau_2/8}$.
Unfortunately q has negative exponents. Substitute $r = pq$ to get

$$\sum_{(x_1, x_2) \in \mathbb{Z}^2} (-1)^{x_1 c + x_2 d} r^{(2x_1 + a)^2 + k(2x_2 + b)^2} q^{(2x_1 + a + 2x_2 + b)^2 + (k+\ell-1)(2x_2 + b)^2}$$

which is a power series with integer coefficients.

Using this representation we can compute the restriction of theta functions (hence modular forms and functions) to a Humbert surface as elements of $\mathbb{Z}[[p, q]]/(p^N, q^N)$.
Let $d = \deg(H_{\Delta}^{(i)})$. To find the algebraic relation $H_{\Delta}^{(i)}$:

- Compute all monomials of degree $\leq d$ in the variables e_1, e_2, e_3.
- Substitute $e_i = \lambda_i(p, q) \in \mathbb{Z}[[p, q]]/(p^N, q^N)$ in each monomial.
- Use linear algebra to find linear dependencies between the power series monomials $p^m q^n$ (compute null space of a big matrix).
With high enough precision there will be exactly one linear relation between the monomials \(e_i\). This produces the polynomial relation \(H^{(i)}_\Delta(e_1, e_2, e_3) = 0\) which defines a Humbert component.

Once one component has been determined, the others can easily be found by looking at the Rosenhain \((S_6)\) orbit of a component.
Runtime analysis

- There are:
 - \(\binom{d+3}{3} = O(d^3) \) monomials to be evaluated
 - \(O(N^2) \) coefficients of evaluated power series expressions of precision \(N \).

- Runtime cost is dominated by the nullspace calculation:
 \(O(d^6 N^2) \geq O(d^9) \) to find a unique solution.

- Symmetries of the equation (arising from the fixed group of the humbert component) can be exploited to reduce the matrix size by a constant factor, giving a speedup by a constant factor.

- Not overly efficient, but least it’s only a one time calculation.
Example

We calculate a component of H_5:

$$\lambda_1 = 1 + 16p^4 q^8 + O(p^{12} q^{12})$$

$$\lambda_2 = 1 + 4q^4 + 8q^8 - 8p^4 q^4 - 24p^4 q^8 + 4p^8 q^8 + 48p^8 q^8 + O(p^{12} q^{12})$$

$$\lambda_3 = 1 + 4q^4 + 8q^8 + 8p^4 q^4 + 40p^4 q^8 + 4p^8 q^8 + 48p^8 q^8 + O(p^{12} q^{12})$$

Using power series with precision 65, we compute the Humbert component

$$e_1^2 e_3 - 2e_2^2 e_3 + e_2 e_3 + 2e_1 e_2 e_3 - 2e_1 e_2 e_3 - 2e_1 e_2 e_3 - 2e_1 e_2 e_3 + 4e_1 e_2 e_3 + 2e_1 e_2 e_3$$

$$-2e_1 e_2 e_3 + e_1 e_2 e_3 - 2e_1 e_2 e_3 + e_1 e_2 + 4e_1 e_2 e_3 - 4e_1 e_2 e_3 - 2e_1 e_2 - 2e_1 e_2 e_3$$

$$+4e_1 e_2 e_3 + e_1 e_2 - 2e_1 e_2 e_3 + e_1 e_2 - 2e_1 e_2 e_3$$

$$-2e_1 e_2 e_3 + 2e_1 e_2 e_3 - 2e_1 e_2 e_3 + 4e_1 e_2 e_3 + 2e_1 e_2 e_3$$

$$-2e_1 e_2 e_3 + 2e_1 e_2 e_3 - 2e_1 e_2 e_3 + e_1 e_3 - 2e_1 e_2 e_3 + e_1 e_2 e_3$$
Part II: Applications and further directions
Let J be a genus 2 Jacobian defined over \mathbb{F}_p and write $K = \mathbb{Q}(\pi)$ where π is the Frobenius endomorphism. We have

$$\mathbb{Z}[\pi, \bar{\pi}] \subseteq \text{End}(J) \subseteq \mathcal{O}_K$$

The complexity of standard algorithm for computing $\text{End}(J)$ is determined by the index $[\mathcal{O}_K : \mathbb{Z}[\pi, \bar{\pi}]] = \prod \ell_i^{e_i}$.

Computing $\text{End}(J)$ relies on computing a basis for $J[\ell_i^{e_i}]$ over its splitting field. Expensive!

But if we know that J has real multiplication by \mathcal{O}_{K^+} where K^+ is the real quadratic subfield, then

$$\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K^+}[\pi, \bar{\pi}] \subseteq \text{End}(J) \subseteq \mathcal{O}_K$$

and the index $[\mathcal{O}_K : \mathcal{O}_{K^+}[\pi, \bar{\pi}]]$ can be smaller.
GLV using real multiplication

If $\sqrt{d} \in \text{End}(J)$ is explicit and efficient then we can use GLV methods for families of hyperelliptic curves having RM.

Basic idea of GLV:
- Let G be a cyclic subgroup of $J_C(\mathbb{F}_p)$ of size n. Then $\sqrt{d} = [\lambda]_G$ for $\lambda \in \mathbb{Z}/n\mathbb{Z}$. Find small k_1, k_2 (not unique!) of size $O(\sqrt{n})$ such that

$$[k]_G = [k_1 + k_2 \sqrt{d}]_G = [k_1] + [k_2] \sqrt{d}.$$

Currently we have explicit real multiplication for discriminants
- $\Delta = 2$: Bending
- $\Delta = 5$: Takashima, Kohel-Smith.

Only two! More would be nice..
Gaudry’s work

Ref: See Gaudry’s ECC 2007 talk slides.

Let C be a genus 2 curve over \mathbb{F}_p having RM by $\mathbb{Q}(\sqrt{d})$. Assume $J_C = \text{Jac}(C)$ is ordinary and absolutely simple.

To determine $\# J_C$ we need to determine the coefficients s_i of the characteristic polynomial of Frobenius π:

$$\chi(t) = t^4 - s_1 t^3 + s_2 t^2 - p s_1 t + p^2, \quad \chi(1) = \# J_C.$$

The Weil bounds give us: $|s_1| \leq 4 \sqrt{p}$ and $|s_2| \leq 6p$.

Use random divisors $D \in J_C(\mathbb{F}_p)$, by construction $\pi(D) = D$. “Plug” D into $\chi(t)$:

$$ [1 - s_1 + s_2 - ps_1 + p^2]D = 0. $$

Use the baby-step giant-step algorithm to search for compatible pairs (s_1, s_2) such that $\chi(1)$ lies in the Weil interval

$$ [(\sqrt{p} - 1)^4, (\sqrt{p} + 1)^4]. $$

\Rightarrow search space has size $O(p^{3/2})$
\Rightarrow number of group operations is $O(p^{3/4})$.
Gaudry’s work

Improvement: \(\pi + \overline{\pi} \in \mathbb{Q}(\sqrt{d}) \) with minimal polynomial

\[
P(t) = t^2 - s_1 t + (s_2 - 2p)
\]

\[\text{disc}(P) = (s_1^2 - 4s_2 + 8p) = n^2 d \] for some integer \(n \).

Idea: search for \(s_1 \) and \(n \) (and deduce \(s_2 \)).

Bounds on \(s_1, s_2 \) give

\[
n \in \{1, \ldots, \sqrt{48p/d}\}.
\]
Gaudry’s work

Since $\text{disc}(P) = ((\pi + \bar{\pi}) - (s_1 - (\pi + \bar{\pi})))^2 = n^2d$ we have

$$(2(\pi + \bar{\pi}) - s_1)^2 = n^2d$$

Multiply both sides by π^2 and use $\pi\bar{\pi} = p$ to get:

$$(2(\pi^2 + p) - s_1\pi)^2 = n^2d\pi^2$$

Let D be a random divisor defined over \mathbb{F}_p. Since $\pi(D) = D$ we obtain

$$(2(1 + p) - s_1)^2D = n^2dD$$

\Rightarrow the search space is reduced to $O(p)$, hence complexity $O(\sqrt{p})$.

Combine with Schoof’s algorithm: determine (s_1, s_2) mod prime powers and use CRT.
Challenge

The point counting record (June 2008) for a hyperelliptic curve is defined over \mathbb{F}_p where $p = 2^{127} - 1$, and produces a 254-bit Jacobian. The characteristic polynomial of Frobenius π has

$$s_1 = -15671660075779706640,$$
$$s_2 = 86154286096042006774781271889300357630$$

The discriminant of $\pi + \bar{\pi}$ factors as

$$2^8 \cdot 2017 \cdot 2444288494729125533009617626375673$$

Challenge: Count the number of points on a curve which lies on a Humbert surface of small discriminant, defined over a prime field of ~ 192 bits.